[image:]

07_BI_Analytics/DB_Analytics_Query_Patterns.docx

Analytics Query Patterns Guide

Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice

Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Analytics & BI Team

1. Executive Summary
Effective analytics requires mastery of SQL query patterns that transform raw data into actionable insights. This guide catalogs essential query patterns for business intelligence, covering time-series analysis, cohort analytics, segmentation, and advanced calculations that power executive dashboards and operational reports.
Query Pattern Categories
	Category
	Purpose
	Example Use Cases

	Time Intelligence
	Temporal analysis
	YoY growth, MTD, rolling averages

	Cohort Analysis
	Group behavior over time
	Customer retention, lifetime value

	Segmentation
	Customer/product grouping
	RFM, deciles, tiering

	Ranking & Top-N
	Ordered analysis
	Top customers, Pareto analysis

	Statistical
	Data exploration
	Distributions, outliers, trends

2. Time Intelligence Patterns
2.1 Year-over-Year Comparison
-- YoY Revenue Comparison
WITH current_year AS (
 SELECT
 d.month_number,
 d.month_name,
 SUM(f.net_amount) AS revenue
 FROM gold.fact_sales f
 JOIN gold.dim_date d ON f.date_key = d.date_key
 WHERE d.year = YEAR(CURRENT_DATE)
 GROUP BY d.month_number, d.month_name
),
prior_year AS (
 SELECT
 d.month_number,
 SUM(f.net_amount) AS revenue
 FROM gold.fact_sales f
 JOIN gold.dim_date d ON f.date_key = d.date_key
 WHERE d.year = YEAR(CURRENT_DATE) - 1
 GROUP BY d.month_number
)
SELECT
 cy.month_name,
 cy.revenue AS current_year_revenue,
 py.revenue AS prior_year_revenue,
 cy.revenue - py.revenue AS variance,
 ROUND((cy.revenue - py.revenue) / NULLIF(py.revenue, 0) * 100, 2) AS yoy_growth_pct
FROM current_year cy
LEFT JOIN prior_year py ON cy.month_number = py.month_number
ORDER BY cy.month_number;
2.2 Month-to-Date and Year-to-Date
-- MTD, QTD, YTD Calculations
SELECT
 d.full_date,
 f.net_amount AS daily_revenue,

 -- Month-to-Date
 SUM(f.net_amount) OVER (
 PARTITION BY d.year, d.month_number
 ORDER BY d.full_date
 ROWS UNBOUNDED PRECEDING
) AS mtd_revenue,

 -- Quarter-to-Date
 SUM(f.net_amount) OVER (
 PARTITION BY d.year, d.quarter
 ORDER BY d.full_date
 ROWS UNBOUNDED PRECEDING
) AS qtd_revenue,

 -- Year-to-Date
 SUM(f.net_amount) OVER (
 PARTITION BY d.year
 ORDER BY d.full_date
 ROWS UNBOUNDED PRECEDING
) AS ytd_revenue
FROM gold.fact_sales f
JOIN gold.dim_date d ON f.date_key = d.date_key
WHERE d.year = YEAR(CURRENT_DATE)
ORDER BY d.full_date;
2.3 Rolling Averages and Trends
-- Rolling Averages (7-day, 30-day, 90-day)
SELECT
 d.full_date,
 SUM(f.net_amount) AS daily_revenue,

 -- 7-day rolling average
 AVG(SUM(f.net_amount)) OVER (
 ORDER BY d.full_date
 ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
) AS rolling_7day_avg,

 -- 30-day rolling average
 AVG(SUM(f.net_amount)) OVER (
 ORDER BY d.full_date
 ROWS BETWEEN 29 PRECEDING AND CURRENT ROW
) AS rolling_30day_avg,

 -- Trend indicator (comparing to 7-day average)
 CASE
 WHEN SUM(f.net_amount) > AVG(SUM(f.net_amount)) OVER (
 ORDER BY d.full_date ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
) * 1.1 THEN 'Above Trend'
 WHEN SUM(f.net_amount) < AVG(SUM(f.net_amount)) OVER (
 ORDER BY d.full_date ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
) * 0.9 THEN 'Below Trend'
 ELSE 'On Trend'
 END AS trend_indicator
FROM gold.fact_sales f
JOIN gold.dim_date d ON f.date_key = d.date_key
WHERE d.full_date >= CURRENT_DATE - INTERVAL 90 DAYS
GROUP BY d.full_date
ORDER BY d.full_date;
2.4 Period-over-Period Growth
-- Week-over-Week, Month-over-Month Growth
WITH weekly_metrics AS (
 SELECT
 DATE_TRUNC('week', d.full_date) AS week_start,
 SUM(f.net_amount) AS weekly_revenue,
 COUNT(DISTINCT f.customer_key) AS weekly_customers
 FROM gold.fact_sales f
 JOIN gold.dim_date d ON f.date_key = d.date_key
 WHERE d.full_date >= CURRENT_DATE - INTERVAL 12 WEEKS
 GROUP BY DATE_TRUNC('week', d.full_date)
)
SELECT
 week_start,
 weekly_revenue,
 weekly_customers,

 LAG(weekly_revenue) OVER (ORDER BY week_start) AS prev_week_revenue,
 ROUND((weekly_revenue - LAG(weekly_revenue) OVER (ORDER BY week_start))
 / NULLIF(LAG(weekly_revenue) OVER (ORDER BY week_start), 0) * 100, 2
) AS wow_growth_pct,

 LAG(weekly_customers) OVER (ORDER BY week_start) AS prev_week_customers,
 weekly_customers - LAG(weekly_customers) OVER (ORDER BY week_start) AS customer_change
FROM weekly_metrics
ORDER BY week_start;
3. Cohort Analysis Patterns
3.1 Acquisition Cohort Retention
-- Customer Retention by Acquisition Cohort
WITH customer_cohort AS (
 SELECT
 customer_key,
 DATE_TRUNC('month', MIN(d.full_date)) AS cohort_month
 FROM gold.fact_sales f
 JOIN gold.dim_date d ON f.date_key = d.date_key
 GROUP BY customer_key
),
customer_activity AS (
 SELECT
 f.customer_key,
 cc.cohort_month,
 DATE_TRUNC('month', d.full_date) AS activity_month,
 DATEDIFF(month, cc.cohort_month, DATE_TRUNC('month', d.full_date)) AS months_since_acquisition
 FROM gold.fact_sales f
 JOIN gold.dim_date d ON f.date_key = d.date_key
 JOIN customer_cohort cc ON f.customer_key = cc.customer_key
)
SELECT
 cohort_month,
 months_since_acquisition,
 COUNT(DISTINCT customer_key) AS active_customers,
 FIRST_VALUE(COUNT(DISTINCT customer_key)) OVER (
 PARTITION BY cohort_month ORDER BY months_since_acquisition
) AS cohort_size,
 ROUND(100.0 * COUNT(DISTINCT customer_key) /
 FIRST_VALUE(COUNT(DISTINCT customer_key)) OVER (
 PARTITION BY cohort_month ORDER BY months_since_acquisition
), 2) AS retention_rate
FROM customer_activity
GROUP BY cohort_month, months_since_acquisition
ORDER BY cohort_month, months_since_acquisition;
3.2 Cohort Revenue Analysis
-- Revenue per Cohort over Time
WITH customer_cohort AS (
 SELECT
 customer_key,
 DATE_TRUNC('month', MIN(d.full_date)) AS cohort_month
 FROM gold.fact_sales f
 JOIN gold.dim_date d ON f.date_key = d.date_key
 GROUP BY customer_key
)
SELECT
 cc.cohort_month,
 DATEDIFF(month, cc.cohort_month, DATE_TRUNC('month', d.full_date)) AS months_since_acquisition,
 COUNT(DISTINCT f.customer_key) AS active_customers,
 SUM(f.net_amount) AS total_revenue,
 SUM(f.net_amount) / COUNT(DISTINCT f.customer_key) AS revenue_per_customer,

 -- Cumulative revenue per customer
 SUM(SUM(f.net_amount)) OVER (
 PARTITION BY cc.cohort_month
 ORDER BY DATEDIFF(month, cc.cohort_month, DATE_TRUNC('month', d.full_date))
) / COUNT(DISTINCT f.customer_key) AS cumulative_revenue_per_customer
FROM gold.fact_sales f
JOIN gold.dim_date d ON f.date_key = d.date_key
JOIN customer_cohort cc ON f.customer_key = cc.customer_key
GROUP BY cc.cohort_month, DATEDIFF(month, cc.cohort_month, DATE_TRUNC('month', d.full_date))
ORDER BY cc.cohort_month, months_since_acquisition;
3.3 Customer Lifetime Value by Cohort
-- LTV by Acquisition Cohort
WITH customer_stats AS (
 SELECT
 f.customer_key,
 DATE_TRUNC('month', MIN(d.full_date)) AS cohort_month,
 SUM(f.net_amount) AS total_revenue,
 COUNT(DISTINCT DATE_TRUNC('month', d.full_date)) AS active_months,
 DATEDIFF(month,
 MIN(d.full_date),
 MAX(d.full_date)) + 1 AS customer_tenure_months
 FROM gold.fact_sales f
 JOIN gold.dim_date d ON f.date_key = d.date_key
 GROUP BY f.customer_key
)
SELECT
 cohort_month,
 COUNT(*) AS cohort_size,
 ROUND(AVG(total_revenue), 2) AS avg_ltv,
 ROUND(PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY total_revenue), 2) AS median_ltv,
 ROUND(AVG(total_revenue / customer_tenure_months), 2) AS avg_monthly_value,
 ROUND(AVG(active_months), 1) AS avg_active_months,
 ROUND(AVG(customer_tenure_months), 1) AS avg_tenure_months
FROM customer_stats
GROUP BY cohort_month
ORDER BY cohort_month;
4. Segmentation Patterns
4.1 RFM Segmentation
-- RFM (Recency, Frequency, Monetary) Segmentation
WITH customer_metrics AS (
 SELECT
 f.customer_key,
 c.customer_name,
 DATEDIFF(day, MAX(d.full_date), CURRENT_DATE) AS recency_days,
 COUNT(DISTINCT f.order_number) AS frequency,
 SUM(f.net_amount) AS monetary_value
 FROM gold.fact_sales f
 JOIN gold.dim_date d ON f.date_key = d.date_key
 JOIN gold.dim_customer c ON f.customer_key = c.customer_key
 WHERE c.is_current = TRUE
 GROUP BY f.customer_key, c.customer_name
),
rfm_scores AS (
 SELECT
 customer_key,
 customer_name,
 recency_days,
 frequency,
 monetary_value,
 NTILE(5) OVER (ORDER BY recency_days DESC) AS r_score, -- Lower recency = higher score
 NTILE(5) OVER (ORDER BY frequency) AS f_score,
 NTILE(5) OVER (ORDER BY monetary_value) AS m_score
 FROM customer_metrics
)
SELECT
 customer_key,
 customer_name,
 recency_days,
 frequency,
 monetary_value,
 r_score,
 f_score,
 m_score,
 CONCAT(r_score, f_score, m_score) AS rfm_segment,
 CASE
 WHEN r_score >= 4 AND f_score >= 4 AND m_score >= 4 THEN 'Champions'
 WHEN r_score >= 3 AND f_score >= 3 AND m_score >= 4 THEN 'Loyal Customers'
 WHEN r_score >= 4 AND f_score <= 2 THEN 'Recent Customers'
 WHEN r_score >= 3 AND f_score >= 3 THEN 'Potential Loyalists'
 WHEN r_score <= 2 AND f_score >= 4 THEN 'At Risk'
 WHEN r_score <= 2 AND f_score <= 2 AND m_score >= 3 THEN 'Hibernating'
 WHEN r_score <= 2 AND f_score <= 2 AND m_score <= 2 THEN 'Lost'
 ELSE 'Others'
 END AS customer_segment
FROM rfm_scores
ORDER BY monetary_value DESC;
4.2 Customer Value Tiers
-- Customer Value Tiers with Distribution
WITH customer_value AS (
 SELECT
 customer_key,
 SUM(net_amount) AS total_revenue
 FROM gold.fact_sales
 GROUP BY customer_key
),
value_tiers AS (
 SELECT
 customer_key,
 total_revenue,
 CASE
 WHEN total_revenue >= PERCENTILE_CONT(0.95) WITHIN GROUP (ORDER BY total_revenue) OVER () THEN 'Platinum'
 WHEN total_revenue >= PERCENTILE_CONT(0.80) WITHIN GROUP (ORDER BY total_revenue) OVER () THEN 'Gold'
 WHEN total_revenue >= PERCENTILE_CONT(0.50) WITHIN GROUP (ORDER BY total_revenue) OVER () THEN 'Silver'
 ELSE 'Bronze'
 END AS value_tier
 FROM customer_value
)
SELECT
 value_tier,
 COUNT(*) AS customer_count,
 ROUND(100.0 * COUNT(*) / SUM(COUNT(*)) OVER (), 2) AS pct_of_customers,
 SUM(total_revenue) AS tier_revenue,
 ROUND(100.0 * SUM(total_revenue) / SUM(SUM(total_revenue)) OVER (), 2) AS pct_of_revenue,
 ROUND(AVG(total_revenue), 2) AS avg_customer_value
FROM value_tiers
GROUP BY value_tier
ORDER BY
 CASE value_tier
 WHEN 'Platinum' THEN 1
 WHEN 'Gold' THEN 2
 WHEN 'Silver' THEN 3
 ELSE 4
 END;
4.3 Product Segmentation (ABC Analysis)
-- ABC Product Classification
WITH product_sales AS (
 SELECT
 p.product_key,
 p.product_name,
 p.product_category,
 SUM(f.net_amount) AS total_revenue
 FROM gold.fact_sales f
 JOIN gold.dim_product p ON f.product_key = p.product_key
 GROUP BY p.product_key, p.product_name, p.product_category
),
product_ranking AS (
 SELECT
 product_key,
 product_name,
 product_category,
 total_revenue,
 SUM(total_revenue) OVER (ORDER BY total_revenue DESC) AS cumulative_revenue,
 SUM(total_revenue) OVER () AS grand_total
 FROM product_sales
)
SELECT
 product_name,
 product_category,
 total_revenue,
 ROUND(100.0 * cumulative_revenue / grand_total, 2) AS cumulative_pct,
 CASE
 WHEN cumulative_revenue / grand_total <= 0.70 THEN 'A' -- Top 70% revenue
 WHEN cumulative_revenue / grand_total <= 0.90 THEN 'B' -- Next 20% revenue
 ELSE 'C' -- Bottom 10% revenue
 END AS abc_class
FROM product_ranking
ORDER BY total_revenue DESC;
5. Ranking and Top-N Patterns
5.1 Top N with Percentage
-- Top 10 Customers with Revenue Share
WITH customer_revenue AS (
 SELECT
 c.customer_name,
 c.region,
 SUM(f.net_amount) AS total_revenue,
 ROW_NUMBER() OVER (ORDER BY SUM(f.net_amount) DESC) AS revenue_rank
 FROM gold.fact_sales f
 JOIN gold.dim_customer c ON f.customer_key = c.customer_key
 WHERE c.is_current = TRUE
 GROUP BY c.customer_name, c.region
)
SELECT
 customer_name,
 region,
 total_revenue,
 revenue_rank,
 ROUND(100.0 * total_revenue / SUM(total_revenue) OVER (), 2) AS revenue_share_pct,
 ROUND(100.0 * SUM(total_revenue) OVER (ORDER BY revenue_rank) /
 SUM(total_revenue) OVER (), 2) AS cumulative_share_pct
FROM customer_revenue
WHERE revenue_rank <= 10
ORDER BY revenue_rank;
5.2 Top N per Group
-- Top 3 Products per Category
WITH ranked_products AS (
 SELECT
 p.product_category,
 p.product_name,
 SUM(f.net_amount) AS revenue,
 ROW_NUMBER() OVER (
 PARTITION BY p.product_category
 ORDER BY SUM(f.net_amount) DESC
) AS rank_in_category
 FROM gold.fact_sales f
 JOIN gold.dim_product p ON f.product_key = p.product_key
 GROUP BY p.product_category, p.product_name
)
SELECT
 product_category,
 product_name,
 revenue,
 rank_in_category
FROM ranked_products
WHERE rank_in_category <= 3
ORDER BY product_category, rank_in_category;
5.3 Pareto Analysis (80/20 Rule)
-- Pareto Analysis: Customers driving 80% of revenue
WITH customer_revenue AS (
 SELECT
 c.customer_key,
 c.customer_name,
 SUM(f.net_amount) AS revenue
 FROM gold.fact_sales f
 JOIN gold.dim_customer c ON f.customer_key = c.customer_key
 GROUP BY c.customer_key, c.customer_name
),
pareto AS (
 SELECT
 customer_name,
 revenue,
 SUM(revenue) OVER (ORDER BY revenue DESC) AS running_total,
 SUM(revenue) OVER () AS grand_total,
 ROW_NUMBER() OVER (ORDER BY revenue DESC) AS customer_rank,
 COUNT(*) OVER () AS total_customers
 FROM customer_revenue
)
SELECT
 customer_name,
 revenue,
 ROUND(100.0 * running_total / grand_total, 2) AS cumulative_revenue_pct,
 ROUND(100.0 * customer_rank / total_customers, 2) AS cumulative_customer_pct,
 CASE WHEN running_total / grand_total <= 0.80 THEN 'Top 80%' ELSE 'Bottom 20%' END AS pareto_group
FROM pareto
ORDER BY revenue DESC;
6. Statistical Analysis Patterns
6.1 Distribution Analysis
-- Order Value Distribution Statistics
SELECT
 COUNT(*) AS total_orders,
 ROUND(AVG(net_amount), 2) AS mean_order_value,
 ROUND(STDDEV(net_amount), 2) AS std_dev,
 ROUND(PERCENTILE_CONT(0.25) WITHIN GROUP (ORDER BY net_amount), 2) AS p25,
 ROUND(PERCENTILE_CONT(0.50) WITHIN GROUP (ORDER BY net_amount), 2) AS median,
 ROUND(PERCENTILE_CONT(0.75) WITHIN GROUP (ORDER BY net_amount), 2) AS p75,
 ROUND(PERCENTILE_CONT(0.90) WITHIN GROUP (ORDER BY net_amount), 2) AS p90,
 ROUND(PERCENTILE_CONT(0.95) WITHIN GROUP (ORDER BY net_amount), 2) AS p95,
 ROUND(PERCENTILE_CONT(0.99) WITHIN GROUP (ORDER BY net_amount), 2) AS p99,
 MIN(net_amount) AS min_value,
 MAX(net_amount) AS max_value
FROM gold.fact_sales;
6.2 Histogram Buckets
-- Order Value Histogram
WITH value_range AS (
 SELECT
 MIN(net_amount) AS min_val,
 MAX(net_amount) AS max_val,
 (MAX(net_amount) - MIN(net_amount)) / 10 AS bucket_width
 FROM gold.fact_sales
)
SELECT
 FLOOR(f.net_amount / vr.bucket_width) * vr.bucket_width AS bucket_start,
 FLOOR(f.net_amount / vr.bucket_width) * vr.bucket_width + vr.bucket_width AS bucket_end,
 COUNT(*) AS order_count,
 ROUND(100.0 * COUNT(*) / SUM(COUNT(*)) OVER (), 2) AS percentage
FROM gold.fact_sales f
CROSS JOIN value_range vr
GROUP BY FLOOR(f.net_amount / vr.bucket_width), vr.bucket_width
ORDER BY bucket_start;
6.3 Outlier Detection
-- Identify Outlier Orders (IQR Method)
WITH stats AS (
 SELECT
 PERCENTILE_CONT(0.25) WITHIN GROUP (ORDER BY net_amount) AS q1,
 PERCENTILE_CONT(0.75) WITHIN GROUP (ORDER BY net_amount) AS q3
 FROM gold.fact_sales
),
iqr_bounds AS (
 SELECT
 q1,
 q3,
 q3 - q1 AS iqr,
 q1 - 1.5 * (q3 - q1) AS lower_bound,
 q3 + 1.5 * (q3 - q1) AS upper_bound
 FROM stats
)
SELECT
 f.order_number,
 f.net_amount,
 c.customer_name,
 CASE
 WHEN f.net_amount < ib.lower_bound THEN 'Low Outlier'
 WHEN f.net_amount > ib.upper_bound THEN 'High Outlier'
 ELSE 'Normal'
 END AS outlier_status
FROM gold.fact_sales f
JOIN gold.dim_customer c ON f.customer_key = c.customer_key
CROSS JOIN iqr_bounds ib
WHERE f.net_amount < ib.lower_bound OR f.net_amount > ib.upper_bound
ORDER BY f.net_amount DESC;
7. Comparison and Variance Patterns
7.1 Budget vs Actual
-- Budget vs Actual Variance Analysis
SELECT
 d.month_name,
 d.year,
 SUM(f.net_amount) AS actual_revenue,
 b.budgeted_revenue,
 SUM(f.net_amount) - b.budgeted_revenue AS variance,
 ROUND((SUM(f.net_amount) - b.budgeted_revenue) / b.budgeted_revenue * 100, 2) AS variance_pct,
 CASE
 WHEN SUM(f.net_amount) >= b.budgeted_revenue THEN 'On/Above Budget'
 WHEN SUM(f.net_amount) >= b.budgeted_revenue * 0.9 THEN 'Within 10%'
 ELSE 'Below Budget'
 END AS budget_status
FROM gold.fact_sales f
JOIN gold.dim_date d ON f.date_key = d.date_key
JOIN gold.budget b ON d.year = b.year AND d.month_number = b.month_number
GROUP BY d.month_name, d.year, d.month_number, b.budgeted_revenue
ORDER BY d.year, d.month_number;
7.2 A/B Test Analysis
-- A/B Test Results Comparison
WITH test_results AS (
 SELECT
 test_group,
 COUNT(*) AS sample_size,
 SUM(converted) AS conversions,
 AVG(order_value) AS avg_order_value,
 SUM(revenue) AS total_revenue
 FROM gold.ab_test_data
 WHERE test_name = 'checkout_flow_v2'
 GROUP BY test_group
)
SELECT
 test_group,
 sample_size,
 conversions,
 ROUND(100.0 * conversions / sample_size, 2) AS conversion_rate,
 ROUND(avg_order_value, 2) AS avg_order_value,
 total_revenue,
 ROUND(total_revenue / sample_size, 2) AS revenue_per_visitor
FROM test_results
ORDER BY test_group;
8. Best Practices Summary
8.1 Query Optimization Tips
	Pattern
	Best Practice

	Time filters
	Filter early, use partition columns

	Aggregations
	Pre-aggregate in CTEs when reused

	Window functions
	Minimize OVER() clauses

	Joins
	Start with smallest table, use broadcast hints

	Subqueries
	Prefer CTEs for readability and optimization

8.2 Performance Checklist
[] Use partition pruning with date filters
[] Leverage materialized views for complex aggregations
[] Apply appropriate WHERE clauses before GROUP BY
[] Use approximate functions (APPROX_COUNT_DISTINCT) for large datasets
[] Test with production data volumes
Document Control
	Field
	Value

	Version
	1.0

	Created
	2025-01-29

	Last Updated
	2025-01-29

	Next Review
	2025-04-29

	Author
	Analytics & BI Team

image1.png
#MAST=CH
DIGITAL

